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We study [1] the sensitivities of the centroid energy E0 of the isoscalar giant monopole 

resonance (ISGMR) and the centroid energy E1 of the isoscalar giant dipole resonance (ISGDR) to the 
effect of relaxation.  We use the semi-classical kinetic approach in (r,p) phase space, also called the fluid 
dynamic approach (FDA). A small variation of the distribution function δf(r, p) can be evaluated using 
the linearized kinetic equation. To evaluate δf we will apply the linearized Landau-Vlasov equation, 
augmented by a source term δSt(f) for relaxation processes, in the form  
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where v = p/m* is the quasi-particle velocity and m* is the effective mass of the nucleon. Uself and Uext are 
the mean field and external field, respectively.  The right-hand side of Eq. (1) represents the change of 
the distribution function due to relaxation. In this work we use the approximation 
 

     [ ] .1111             ,
12effeff ↑

++=−=
τττττ

δδ ffSt   (2) 

 
Here, the term 1/τ2 is due to the two-body collisions on the distorted Fermi surface, 1/τ1 determines the 
change in the distribution function resulting from one-body relaxation on the moving nuclear surface and 
1/τ↑ takes into account the possibility of particle emission. We assume 
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In Eq. (3) ωR is the real part of the eigenfrequency of the sound mode. The coefficient β depends on the 
NN-scattering cross sections. We will use the value of β=4.6 MeV which corresponds to the isotropic 
energy independent NN-cross sections σpp = σnn = 25 mb and σpn= σnp = 50 mb. R0 is a nuclear 

radius, 4/3 Fνν = ν  and ζ is a free numerical factor which depends on the excitation mode. For heavy 

nuclei, the value of the emission width ↑↑ ≈Γ τ/1  is quite small and we neglect the contribution of the 

particle emission to the total relaxation time τeff. Evaluating the p-moments to the kinetic equation (1), 
one can reduce the kinetic equation to the equation for the particle density eigenvibrations, δρL, 
depending on momenta q and frequencies ω. Imposing the boundary conditions for the consistent 
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solutions of both the continuity and the Euler equations, taken at the moving nuclear surface, one obtains 
a solution for δρL(q,ω) by solving a dispersion relation for Γ+= iEω  and a secular equation for q. 

In the figure below, we show the dependence of the energy ratio E1/E0 on the nuclear mass 
number A. Considering the dependence of the FDA ratio (E1/E0)FDA on the relaxation time τeff, we find a 
good agreement between experimental data and the results of the FDA model calculations (solid line 2) 
for the value of ζ fitted to the widths Γ0 and Γ1. In the figure, the ratio (E1/E0)FDA for the rare collision 
regime (solid line 1) was obtained for the limit τeff → ∞, and (E1/E0)RPA is obtained from quantum  and 
fully self-consistent Hartree-Fock based Random Phase Approximation (HF-RPA) calculations. The ratio 
(E1/E0)scaling (dotted line) is obtained from the scaling model. Also shown is the liquid drop (LDM) limit 
of ≈ 1.43. The ratios ( E1/E0)RPA, (E1/E0)scaling and (E1/E0)FDA in a rare collision regime significantly 
exceed the liquid drop model (LDM) estimate (E1/E0)LDM and the experimental data (E1/E0)exp=1.6±0.1 
[2, 3]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We have demonstrated that one can obtain an agreement with the experimental data on E1/E0 in 

the presence of relaxation processes. Besides the collisional width, the experimentally observable widths 
of the ISGMR and the ISGDR include the fragmentation width. Within our semi-classical kinetic theory, 
this mechanism of resonance spreading is considered an additional relaxation effect (one-body 
relaxation) due to the single particle scattering on the moving surface of the nucleus [3]. 
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FIG. 1. Dependence of the energy ratio E1/E0 on the nuclear mass number A.  
 
 


	Effects of one and two-body relaxations on isoscalar compression modes
	We study [1] the sensitivities of the centroid energy E0 of the isoscalar giant monopole resonance (ISGMR) and the centroid energy E1 of the isoscalar giant dipole resonance (ISGDR) to the effect of relaxation.  We use the semi-classical kinetic appro...
	(1)
	where v = p/m* is the quasi-particle velocity and m* is the effective mass of the nucleon. Uself and Uext are the mean field and external field, respectively.  The right-hand side of Eq. (1) represents the change of the distribution function due to re...
	(2)
	Here, the term 1/τ2 is due to the two-body collisions on the distorted Fermi surface, 1/τ1 determines the change in the distribution function resulting from one-body relaxation on the moving nuclear surface and 1/τ↑ takes into account the possibility ...
	(3)
	In Eq. (3) ωR is the real part of the eigenfrequency of the sound mode. The coefficient β depends on the NN-scattering cross sections. We will use the value of β=4.6 MeV which corresponds to the isotropic energy independent NN-cross sections σpp = σnn...
	In the figure below, we show the dependence of the energy ratio E1/E0 on the nuclear mass number A. Considering the dependence of the FDA ratio (E1/E0)FDA on the relaxation time τeff, we find a good agreement between experimental data and the results ...
	We have demonstrated that one can obtain an agreement with the experimental data on E1/E0 in the presence of relaxation processes. Besides the collisional width, the experimentally observable widths of the ISGMR and the ISGDR include the fragmentation...
	[1] D.C. Fuls, V.M. Kolomietz, S.V. Lukyanov, and S. Shlomo, EPL (accepted).
	[2] D.H. Youngblood, H.L. Clark and Y.-W. Lui, Phys. Rev. C 69, 034315 (2004).
	[3] D.H. Youngblood, H.L. Clark and Y.-W. Lui, Phys. Rev. C 69, 054312 (2004).

